Bis(3-allylacetylacetonato)copper(II),* $\mathbf{C}_{16} \mathbf{H}_{22} \mathbf{C u O}_{4}$

By A. A. Aruffo, L. D. Anderson, E. C. Lingafelter and Verner Schomaker
Department of Chemistry BG-10, University of Washington, Seattle, WA 98195, USA

(Received 28 May 1982; accepted 5 October 1982)

Abstract

M_{r}=341.9, \quad\) monoclinic, $\quad P 2_{1} / n, \quad a=$ 13.544 (5),$\quad b=4.677$ (3),$\quad c=13.861$ (7) $\AA, \quad \beta=$ $110.79(3)^{\circ}, V=820.8 \AA^{3}, Z=2, d_{x}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71067 \AA, \quad \mu=14.0 \mathrm{~cm}^{-1}, \quad T=290 \mathrm{~K}$. Final $R=0.056$ for 1476 contributing reflections. Cu at $(0,0,0)$ is centrosymmetrically bonded to four O atoms, the CuO_{4} plane making an angle of $46.7(1)^{\circ}$ with the ac plane along a line $34.5(1)^{\circ}$ away from a toward c . The shortest $\mathrm{Cu}-\mathrm{Cu}$ distance is 4.677 (3) \AA and the closest intermolecular Cu contact is $3 \cdot 185$ (4) Å, with C(3).

Introduction. Horng Chin Yeh (1981) prepared bis(3allylacetylacetonato)copper(II) as one of a number of model compounds to be polymerized or copolymerized to obtain transition-metal-complex cross-linked elastomers. He and Professor B. E. Eichinger also asked whether the crystal structure is such as to facilitate polymerization by way of the allyl groups either within the crystal or at the crystal surface.

Experimental. Fragile, platy, green-gray needles with a touch of metallic luster were obtained by dissolving small amounts of the powder in a mixture of petroleum ether and methanol and letting the solvent evaporate slowly, crystal $1.45 \times 0.15 \times 0.05 \mathrm{~mm}$ mounted along the needle axis (b) used for the photographic work as well as the subsequent diffractometry; precession and Weissenberg photographs, systematic absences $0 k 0$ for k odd and $h 0 l$ for $h+l$ odd; Picker FACS- 1 diffractometer, unit cell: 15 reflections, $2 \theta>23^{\circ}$, centered at $\pm 2 \theta$, least-squares refinement; intensity measurements with $\mathrm{Nb}(0.076 \mathrm{~mm})$-filtered Mo $K \alpha$ radiation by $\theta-2 \theta$ scans at $2^{\circ} \mathrm{min}^{-1}$ in 2θ with 20 s background counts fore and aft, base width 2° plus $\alpha_{1}-\alpha_{2}$ dispersion, 1556 reflections in quadrant $\pm h, k, l, 3<2 \theta<60^{\circ}$, about 800 reflections in range $45<2 \theta<60^{\circ}$ passed by on the grounds that an initial 2 s peak count was less than 40 , for every 250 reflections five standards monitored and orientation checked, standards did not decline appreciably in intensity and indicated $p=1 \%$ (instability constant), included in estimating the standard deviations of the integrated intensities by $\sigma_{I}^{2}=$ $S+t^{2} B+p^{2} I^{2}, \quad I=S-t B, \quad$ no reflections strong

* IUPAC name: Bis(3-allyl-2,4-pentanedionato)copper (II).

0108-2701/83/020201-03\$01.50
enough to require coincidence-loss correction; programs of the XRAY system (Stewart, Machin, Ammon, Dickinson, Heck \& Flack, 1976) used for data reduction and all subsequent calculations; all C and O atoms located on a series of Fourier maps phased initially on the Cu atom at $(0,0,0)$; after several cycles of full-matrix least squares ($R<10 \%$) a difference map showed all the H atoms (one H of each CH_{3} is cis to an 0) except $H(7), H(81)$, and $H(82)$, which were then placed at bond lengths $\mathrm{C}-\mathrm{H}=1.0 \AA$ and appropriate bond angles and refined in position and U (never simultaneously) with the rest of the structure; final cycle of anisotropic least-squares, on F with the usual form factors [Stewart, Davidson \& Simpson (1965) for H, International Tables for X-ray Crystallography (1974) otherwise], $F(000)=358,1 / \sigma_{F o}^{2}$ weights, inclusion rule $\left|F_{c}\right|$ or $F_{o}>1 \cdot 1 \sigma\left(F_{o}\right)\left\{1476\right.$ contributing $F_{o}{ }^{\prime}$ s, 80 of the 100 'less-thans' excluded, $(\Delta / \sigma)_{\mathrm{av}}=0.05,(\Delta / \sigma)_{\max }=$ 0.88 for $U[\mathrm{H}(81)]\}, w R=0.050, S=1.3$; no corrections made for anomalous dispersion, extinction, absorption (estimated range of A about 0.80 to 0.93 , almost entirely due to the $1: 3$ cross section of the specimen), or variation with θ and χ of length of illumination of specimen in X-ray beam, defined by a 0.5 mm collimator, from 1.00 min at $\chi=0^{\circ}$, all 2θ, or $\chi=90,2 \theta=0^{\circ}$, to $1 \cdot 10 \mathrm{~min}$ at $\chi=90,2 \theta=50^{\circ}$, H positions held fixed (averages: $\mathrm{C}-\mathrm{H}=0.96 \AA$, $s p^{3} \quad \mathrm{H}-\mathrm{C}-\mathrm{H}=107^{\circ}$; scatter e.s.d.'s for single values $0.06 \AA$ and 6° vs average e.s.d.'s of $0.04 \AA$ and 4° from the next-to-last least-squares cycle); extrema of subsequent difference map all less than $0.45 \mathrm{e} \AA^{-3}$.

It did not seem worthwhile to make the absorption and illumination corrections. They would no doubt change the $U_{i j}$'s considerably, but would have almost no effect on the atom positions or the statistics of fit.

Discussion. The atomic parameters are given in Table $1 \dagger$ and Fig. 1 shows a perspective view of the molecule.
As in the six earlier copper 'acac' structures (see summary, Table 6, Robertson \& Truter, 1967; Blackstone, van Thuijl \& Romers, 1966) and in

[^0]© 1983 International Union of Crystallography
$\mathrm{Cr}(\mathrm{acac})_{2}$ (Cotton, Rice \& Rice, 1977), the coordination is square planar (Tables 2 and 3), with $\mathrm{Cu}-\mathrm{O}=1.905$ (3) and 1.904 (3) \AA vs 1.914 (2) \AA, $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)=91.8(1)^{\circ}$ vs $92.9(1)^{\circ}$, and 'bite' distance $\mathrm{O}(1) \cdots \mathrm{O}(2)=2.734$ (4) \AA vs 2.772 (4) \AA, the comparisons being with the averages of the other structures. In all these structures except $\mathrm{Cu}(3-$ phenylacac) ${ }_{2}$, which differs markedly in its packing from the others, there are also notably short contacts (Table 3; the nominal $\mathrm{Cu} \cdots \mathrm{C}$ van der Waals distance is about $3.7 \AA$) in rather precisely the remaining orthogonal directions, the molecules stacking tightly but steeply tilted into columns along the shortest crystal axis, neither the tilt nor the axial length changing much with the substitutions except in Cu (dibenzoylmethanate) ${ }_{2}$, where the short contact is displaced from $\mathrm{C}(3)$ to the $\alpha-\mathrm{C}$ atom of a phenyl group. The columns pack together more loosely and with or without alternations in orientation to accommodate the substituents. Whether the short $\mathrm{Cu} \cdots \mathrm{C}$ contacts represent substantial bonding has been both suggested and doubted (see Robertson \& Truter, 1967), but they do occur in most of the structures, and in the present structure both the angles $\mathrm{Cu} \cdots \mathrm{C}(3)-\mathrm{C}(2)=91.7$ (3), $\mathrm{Cu} \cdots \mathrm{C}(3)-\mathrm{C}(4)=90.8(3), \quad$ and $\quad \mathrm{Cu} \cdots \mathrm{C}(3)-$ $\mathrm{C}(6)=91.2(3)^{\circ}$ and the sequence of stacking contacts $\quad\{\mathrm{Cu} \cdots \mathrm{C}(3)=3 \cdot 18 ; \quad \mathrm{O}(1) \cdots \mathrm{C}(4)=$ $3 \cdot 23, \quad \mathrm{O}(2) \cdots \mathrm{C}(2)=3 \cdot 23, \quad \mathrm{O}(1) \cdots \mathrm{O}(2)=3 \cdot 29$, $\mathrm{C}(2) \cdots \mathrm{C}(4)=3 \cdot 63 ; \mathrm{Cu} \cdots \mathrm{C}(3)=3 \cdot 18 ; \mathrm{C}(6) \cdots[\mathrm{Cu}=$ $3 \cdot 56, \mathrm{O}(1)=3 \cdot 53, \mathrm{O}(2)=3 \cdot 56, \mathrm{C}(2)=3 \cdot 70, \mathrm{C}(4)=$ 3.72 , and $C(3)=3.80 \AA]\}$ strongly suggest that $C(3)$ is attracted toward Cu while the other stacking contacts are repulsive, causing the molecular plates to bend away from the mean planes in the somewhat complex pattern shown in Table 4. The pattern illustrated by Cotton et al. (1977) for $\mathrm{Cr}(\mathrm{acac})_{2}$ is similar, and the metallic cast of the present crystals is also suggestive. Further study seems to be indicated.

Table 1. Atomic coordinates and isotropic thermal parameters
$U_{\text {eq }}=\frac{1}{3}$ trace \mathbf{U}, where \mathbf{U} is the diagonalized $U_{i j}$ matrix.

	x	y	z	$\begin{gathered} U_{\mathrm{cq}} / U_{\text {iso }} \\ \left(\AA^{2} \times 10^{2}\right)^{*} \end{gathered}$
Cu	0.0000	0.0000	0.0000	3.7
O(1)	0.0781 (2)	0.2045 (5)	0.1222 (2)	4.2
O(2)	-0.1253 (2)	0.2083 (5)	-0.0147 (2)	4.3
C(1)	0.1283 (3)	0.5254 (10)	0.2606 (3)	$5 \cdot 6$
C (2)	0.0454 (3)	0.4046 (8)	0.1655 (3)	3.9
C(3)	-0.0582 (3)	0.5155 (8)	0.1319 (3)	3.8
C(4)	-0.1367 (3)	0.4076 (8)	0.0428 (3)	3.9
C(5)	-0.2473 (3)	0.5365 (10)	0.0046 (4)	5.9
C(6)	-0.0864 (3)	0.7380 (9)	0.1976 (3)	5.0
C(7)	-0.1162 (4)	$0 \cdot 6085$ (14)	0.2829 (4)	7.6
C(8)	-0.0801 (6)	0.6595 (21)	0.3769 (5)	12.4
H(11)	0.109 (3)	0.515 (9)	0.321 (3)	7.3
H(12)	0.193 (3)	0.428 (8)	0.279 (3)	6.4
H(13)	0.141 (3)	0.712 (9)	0.251 (3)	6.5
H(51)	-0.276 (3)	0.542 (8)	0.058 (3)	8.3
H(52)	-0.241 (4)	0.729 (10)	-0.010 (4)	8.1
H(53)	-0.294 (3)	0.414 (10)	-0.051 (4)	8.2
H(61)	-0.137 (3)	0.856 (9)	0.157 (3)	7.1
$\mathrm{H}(62)$	-0.032 (3)	0.865 (9)	0.225 (3)	5.5
H(7)	-0.147 (3)	0.423 (9)	0.285 (4)	6.9
$\mathrm{H}(81)$	-0.029 (3)	0.826 (9)	0.394 (3)	18.0
H(82)	-0.107 (3)	0.528 (8)	0.431 (3)	17.2

* E.s.d.'s are of the order of 5% for non-H atoms and 20% for H atoms.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O}(1)$	$1.905(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.407(5)$
$\mathrm{Cu}-\mathrm{O}(2)$	$1.904(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.524(6)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.273(5)$	$\mathrm{C}(3)-\mathrm{C}(6)$	$1.518(6)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.271(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.506(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.505(5)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.241(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.411(5)$		
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	$91.76(12)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$	$119.1(3)$
$\mathrm{Cu} \mathrm{O}(1)-\mathrm{C}(2)$	$127.8(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)$	$120.0(3)$
$\mathrm{Cu}-\mathrm{OO}(2)-\mathrm{C}(4)$	$127.6(2)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.3(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.4(3)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.3(3)$
$\mathrm{O}(1)-\mathrm{C}(2) \mathrm{CC}(3)$	$125.8(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.4(4)$
$\mathrm{C}(1)-\mathrm{CC}(2)-\mathrm{C}(3)$	$119.7(4)$	$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	$112.9(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.8(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$129.2(6)$

Fig. 1. ORTEP drawing of the molecule (Johnson, 1965).

Table 3. Stacking comparisons

Compound	Stacking axis	Shortest		
		Tilt of CuO_{4}^{*}	$\mathrm{Cu} \cdot \mathrm{C}$	Reference
Cu(benzoylacctonato):	$a=4.475$ (5) A	$44.3{ }^{\circ}+$	$3.02 \dot{\mathbf{A}} \ddagger$	(1)
Cu(ethyl acetoacetato)	$b=4.527(2)$	45.0	3.12	(2)
$\mathrm{Cu}(3-\mathrm{allylacac})$:	$b=4.677$ (3)	46.7	$3 \cdot 19$	(3)
$\mathrm{Cu}(\mathrm{acac})_{2}$,	$b=4.71$ (1)	$45 \cdot 1$	3.01	(4a)
$\mathrm{Cu}(\mathrm{acac})_{2}$	$b=4.71$	44.9	3.09	(4b)
$\mathrm{Cu}\left(3\right.$-methylacac) ${ }_{2}$	$b=4.81$ (1)	47.3	3.216	(5)
Cu (dibenzoylmethanato):	$b=6.07$	59.2	3.14	(6)
Cu(3-phenylacac) 2	b 4	-	3.65	(7)
$\mathrm{Cr}(\mathrm{acac})_{2}$	$b=4.748(1)$	46.1	3.048	(8)

References: (1) Ping-Kay Hon, Pfluger \& Belford (1966); (2) Barclay \& Cooper (1965); (3) this work; (4a) Starikova \& Shugam (1969); (4b) Dahl, cited by Piper \& Belford (1962) Ireference 5 gives $\mathrm{Cu} \cdots \mathrm{C}(3)=3.075$ Á, citing Dahll; (5) Robertson \& Truter (1967); (6) Blackstone et al. (1966); (7) Carmichael, Steinrauf \& Belford (1965); (8) Cotton et al. (1977).

[^1]Table 4. Distances (\AA) from least-squares planes

	A	B	C		A	B	C
Cu	-0.041	0.000	-0.000	$\mathrm{C}(4)$	0.021	0.025	-0.019
$\mathrm{O}(1)$	-0.015	0.007	0.000	$\mathrm{C}(5)$	-0.030	-0.038	-0.101
$\mathrm{O}(2)$	0.006	0.028	0.000	$\mathrm{C}(6)$	0.156	0.126	0.063
$\mathrm{C}(1)$	-0.009	-0.017	-0.042	$\mathrm{C}(7)$	1.578	1.541	1.473
$\mathrm{C}(2)$	0.001	0.004	-0.020	$\mathrm{C}(8)$	2.113	2.066	1.993
$\mathrm{C}(3)$	0.026	0.019	-0.024				

Planes defined by $\mathrm{Cu}, \mathrm{C}(1) \cdots \mathrm{C}(5), \mathrm{O}(1)$ and $\mathrm{O}(2)(A)$, by the atoms for plane A plus their centric mates (B), and by $\mathrm{Cu}, \mathrm{O}(1)$ and $\mathrm{O}(2)(C)$. Dihedral angles: $0.84(A$ and $B), 0.87(B$ and $C), 1.66(A$ and $C), 48.3(A$ and $a c), 46 \cdot 7(B$ and $a c)$, and $47.5^{\circ}(C$ and $a c)$. Angles from a towards \mathbf{c} of the lines of intersection of A, B, and C with $a c: 34 \cdot 19,34 \cdot 62$, and $34 \cdot 58^{\circ}$. E.s.d.'s of atom positions about $0.005 \AA$; of points on the plane not available, but considerably different for the different planes and for different points on a given plane, the greatest possibly being no more than $0.01 \AA$.

The allyl torsion angles are $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)=$ 126.7 (8) (vinyl cis to methylene H as expected; see e.g. Pauling, 1960), $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)=91.9$ (5), and $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(2)=-83.8(5)^{\circ}$, the $\mathrm{C}-\mathrm{C}$ bond of the allyl group twisting down about 90° from the ligand plane. At $1.241(8) \AA, C(7)=C(8)$ is excessively short, mainly, we feel, by foreshortening, $U[C(8)]$ being very large, and much larger than $U[C(7)]$. There are only two short $\mathrm{C}(8)$ contacts with non- H atoms, at 3.65 (1) \AA with a $\mathrm{C}(8)$ and at 3.74 (1) \AA with a $C(5)$, and none along \mathbf{b}, on which $U|C(8)|$ has its largest component. It is not obvious whether the $\mathrm{C}(8)$ contacts, along with $\mathrm{C}(7) \cdots \mathrm{C}(7)$ at
4.13 (1) \AA, are short enough or so disposed as to support the original suggestion that a solid-state polymerization might be possible.

References

Barclay, G. A. \& Cooper, A. (1965), J. Chem. Soc. pp. 3746-3751.
Blackstone, M., van Thull, J. \& Romers, C. (1966). Recl Trav. Chim. Pays-Bas, 85, 557-566.
Carmichael, J. W., Steinrauf, L. K. \& Belford, R. L. (1965). J. Chem. Phys. 43, 3959-3966.
Corton, F. A., Rice, C. E., \& Rice, G. W. (1977). Inorg. Chim. Acta, 24, 231-234.
Horng Chin Yeh (1981). PhD Thesis, Univ. of Washington.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Pauling, L. (1960). The Nature of the Chemical Bond, pp. 140-142. Ithaca: Cornell Univ. Press.
Ping-Kay Hon, Pfluger, C. E. \& Belford, R. L. (1966). Inorg. Chem. 5, 516-521.
Piper, T. S. \& Belford, R. L. (1962). Mol. Phys. 5, 169-181.
Robertson, I. \& Truter, M. R. (1967). J. Chem. Soc. pp. 309-313.
Starikova, Z. A. \& Shugam, E. A. (1969). Zh. Strukt. Khim. 10, 290-293.
Stewart, J. M., Machin, P. A., Ammon, H. L., Dickinson, C., Heck, H. \& Flack, H. (1976). The XRAY system-version of March, 1976. Tech.Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of catena- μ-Aqua-bis(benzimidazole)diformatocopper(II), $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathbf{H}_{6} \mathbf{N}_{\mathbf{2}}\right)_{2}\left(\mathbf{C H O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

By M. Bukowska-Strzyżewska and A. Tosik
Institute of General Chemistry, Technical University, 36 Z̊wirki, 90-924 Łódź, Poland

(Received 22 April 1982; accepted 11 October 1982)

Abstract

M_{r}=407.9\), monoclinic, $C 2 / c, a=12.94$ (4), $b=12.70$ (4), $\quad c=10.40$ (2) $\AA, \quad \beta=96.0$ (3) ${ }^{\circ}, \quad V=$ $1699.8 \AA^{3}, Z=4, D_{x}=1.590, D_{m}=1.62(2) \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.5418 \AA$. The structure determination, was based upon 844 independent reflections. Fullmatrix least-squares refinement yielded a conventional R factor of 0.065 . A specific one-dimensional polymeric structure has been established. The formate ions and benzimidazole molecules are monodentate ligands, forming two $\mathrm{Cu}-\mathrm{O}$ bonds of 1.997 (5) \AA and two $\mathrm{Cu}-\mathrm{N}$ bonds of 2.017 (6) \AA. The square coordination is expanded to elongated octahedral coordination by the

bridging $\mathrm{H}_{2} \mathrm{O}$ molecules with $\mathrm{Cu}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distances of 2.625 (2) \AA and an angle $\mathrm{Cu}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{Cu}^{i}$ of $164 \cdot 2(5)^{\circ}$.

Introduction. The interaction of imidazole and benzimidazole or their derivatives with transition-metal ions is believed to be important in determining the activity of many biologically important molecules (Sundberg \& Martin, 1974). In proteins, the imidazole groups of histidine residues are known to be metalbinding sites (Freeman, 1967). The behaviour of imidazole groups as ligands has hitherto been charac-

[^0]: \dagger Lists of F_{o}, F_{c} and $\sigma\left(F_{o}\right)$ and of the Gaussian amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38177 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * Tilt is the angle between the normal to the CuO_{4} plane and the stacking axis.
 \dagger E.s.d.'s about 0.1°.
 \ddagger E.s.d.'s about $0.005 \AA$.

